1		Mark	Comment	
(i)	Hor $21t = 60$	M1	Use of horizontal components and $a = 0$ or $s = vt - 0.5at^2$ with $v = 0$.	
	so $\frac{20}{7}$ s (2.8571)	A1	Any form acceptable. Allow M1 A1 for answer seen WW.	
			[If $s = ut + 0.5at^2$ and $u = 0$ used without justification award M1 A0] [If $u = 28$ assumed to find time then award SC1]	
	either $0 = u - 9.8 \times \frac{20}{7}$	M1	Use of $v = u + at$ (or $v^2 = u^2 + 2as$) with $v = 0$. or Use of $v = u + at$ with $v = -u$ and	
	or $-u = u - 9.8 \times \left(\frac{40}{7}\right)$		appropriate t.	
	or $40 = u \times \frac{20}{7} - 4.9 \left(\frac{20}{7}\right)^2$		or Use of $s = ut + 0.5at^2$ with $s = 40$ and appropriate t Condone sign errors and, where appropriate,	
	so <i>u</i> = 28 so 28 m s ⁻¹	E1	$u \leftrightarrow v$. Accept signs not clear but not errors. Enough working must be given for 28 to be properly shown. [NB $u = 28$ may be found first and used to find time]	4
(ii)	$y = 28t - 0.5 \times 9.8t^2$	E1	Clear & convincing use of $g = -9.8$ in $s = ut + 0.5at^2$ or $s = vt - 0.5at^2$ NB: AG	1
(iii)	Start from same height with same (zero) vertical speed at same time, same acceleration	E1	For two of these reasons	
	Distance apart is $0.75 \times 21t = 15.75t$	M1 A1	0.75×21 <i>t</i> seen or 21 <i>t</i> and 5.25 <i>t</i> both seen with intention to subtract. Need simplification - LHS alone insufficient. CWO.	3
(iv) (A)	either Time is $\frac{20}{7}$ s by symmetry so $15.75 \times \frac{20}{7} = 45$ so 45 m or Hit ground at same time. By symmetry one travels 60 m	B1 B1	Symmetr or <i>uvast</i> FT their (iii) with $t = \frac{20}{7}$	
	so the other travels 15 m in this time ($\frac{1}{4}$ speed) so 45 m.	B1	[SC1 if 90 m seen]	2
(B)	see next page			

1	continued			
(B)			[SC1 if either and or methods mixed to give $\pm 30 = 28t - 4.9t^2$ or $\pm 10 = 4.9t^2$]	
	either			
	Time to fall is $40-10 = 0.5 \times 9.8 \times t^2$	M1 A1	Considering time from explosion with $u = 0$. Condone sign errors. LHS. Allow ± 30	
		A1	All correct	
	<i>t</i> = 2.47435	A1	cao	
	need 15.75×2.47435 = 38.971 so 39.0 (3sf) or	F1	FT their (iii) only.	
	Need time so $10 = 28t - 4.9t^2$	M1	Equating $28t - 4.9t^2 = \pm 10$	
	$4.9t^2 - 28t + 10 = 0$	M1*	Dep. Attempt to solve quadratic by a method that could give two roots.	
	SO $t = \frac{28 \pm \sqrt{28^2 - 4 \times 49 \times 10}}{9.8}$		a see come give me come	
	so 0.382784 or 5.33150	A1	Larger root correct to at least 2 s. f. Both method marks may be implied from two correct roots alone (to at least 1 s. f.).	
	T' ' L' - 5 00450 20		[SC1 for either root seen WW]	
	Time required is 5.33150 $-\frac{20}{7}$ =	M1		
	2.47435 need 15.75×2.47435 = 38.971 so 39.0 (3sf)	F1	FT their (iii) only.	5
				5
(v)	Horiz $(x =) 21t$	B1		
` '	Elim t between $x = 21t$ and $y = 28t - 4.9t^2$	M1	Intention must be clear, with some attempt made.	
	so $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$	A1	t completely and correctly eliminated from their expression for x and correct y. Only accept wrong notation if subsequently explicitly given correct value	
			e.g $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$.	
	so $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90} (120x - x^2)$	E1	Some simplification must be shown.	
			[SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]	4
		19		_
		ו ט	1	1

2		mark		sub
(i)	Using $s = ut + 0.5at^2$ with $u = 10$ and $a = -10$	E1	Must be clear evidence of derivation of – 5. Accept one calculation and no statement about the other.	1
(ii)	either $s = 0$ gives $10t - 5t^2 = 0$ so $5t(2-t) = 0$ so $t = 0$ or 2. Clearly need $t = 2$ or Time to highest point is given by $0 = 10 - 10t$ Time of flight is $2 \times 1 = 2$ s horizontal range is 40 m as $40 < 70$, hits the ground	B1 M1 A1 M1 M1 A1 B1 E1	Factorising Award 3 marks for $t = 2$ seen WWW Dep on 1 st M1. Doubling their t . Properly obtained FT $20 \times $ their t Must be clear. FT their range.	5
(iii)	need $10t - 5t^2 = -15$ Solving $t^2 - 2t - 3 = 0$ so $(t-3)(t+1) = 0$ and $t = 3$	M1 M1 A1 M1 A1	[May divide flight into two parts] Equate $s = -15$ or equivalent. Allow use of ± 15 . Method leading to solution of a quadratic. Equivalent form will do. Obtaining $t = 3$. Allow no reference to the other root. [Award SC3 if $t = 3$ seen WWW] Range is $20 \times \text{their } t$ (provided $t > 0$) cao. CWO.	5
(iv)	Using (ii) & (iii), since $40 + 60 > 70$, paths cross (For $0 < t \le 2$) both have same vertical motion so B is always 15 m above A	E1	Must be convincing. Accept sketches. Do not accept evaluation at one or more points alone. That B is always above A must be clear.	2
(v)	Need <i>x</i> components summing to 70 $20 \times 0.75 + 20 \times 2.75 = 15 + 55 = 70$ so true Need <i>y</i> components the same $10 \times 2.75 - 5 \times 2.75^2 + 15 = 4.6875$ $10 \times 0.75 - 5 \times 0.75^2 = 4.6875$	M1 E1 M1 B1 E1	May be implied. Or correct derivation of 0.75 s or 2.75 s Attempt to use 0.75 and 2.75 in two vertical height equations (accept same one or wrong one) 0.75 and 2.75 each substituted in the appropriate equn Both values correct. [Using cartesian equation: B1, B1 each equation: M1 solving: A1 correct point of intersection: E1 Verify times]	5